Pages

Monday, December 30, 2013

triangles solution

Solutions triangles
Fill in the blanks
1.     Less than
2.     More than
3.     180o
4.     Acute
5.     Obtuse
6.     60o
Which triangles are feasibles
1.     6+1=7
The sum of two smaller side equal to third therefore it cannot be a triangle (Sum of two angles are always more than third side)

2.     3+2=5
5<6
The sum of two smaller side less than third therefore it cannot be a triangle (Sum of two angles are always more than third side)

3.     80+70+40= 190
Sum of three angles is not equal to 180o. Therefore it cannot be a triangle.

4.     170+6+4=180
    Sum of three angles is equal to 180o. Therefore it is a triangle.
Solve
1.     Right angle = 90
Given angle=30
90+30+ 3rd angle=180
120+ 3rd angle=180
3rd angle= 180-120
3rd angle = 60
2.     One of the equal angles =40
∠A+∠B+∠C=180
40+40+∠C=180
80+∠C=180
∠C=180-80
∠C=100

3.     Unequal angle of isosceles triangle=30
∠A+∠B+∠C=180
30+∠B+∠C=180
∠B+∠C=180-30
∠B+∠C=150
∠B=∠C=150/2
∠B=∠C=75

4.     ∠A+∠B+∠C=180
80+20+∠C=180
100+∠C=180
∠C=180-100
∠C=80

5.     Right angle= 90
Isosceles triangle= two other angles are equal
∠A+∠B+∠C=180
90+∠B+∠C=180
∠B+∠C=180-90
∠B+∠C=90
∠B=∠C=90/2
∠B=∠C=45

6.   
   

No of triangles= 32
Different ways in which the marked angle can be named:
∠ACE, ∠ACJ, ∠ACI
∠GCE, ∠GCJ, ∠GCI
∠HCI, ∠HCJ, ∠HCE
∠ICH, ∠ICG, ∠ICA
∠JCH, ∠JCG, ∠JCA
∠ECH, ∠ECG, ∠ECA
7. vertices- A, B, C
Sides- AB, BC, CA
Acute angles- ∠ABC, ∠ACB

Obtuse angles- ∠BAC

No comments:

Post a Comment